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The constitutive relations between the internal stresses and the deformation parameters of a sea ice cover, which are used in 
the AIDJEX elastoplastic model and Hibler’s non-linearly viscous model, are investigated. It is shown that the structural instability 
of the ice cover with respect to plastic shear deformations is a consequence of the associated flow rule used in these models. 
The use of constitutive relations which violate the associated flow rule, but which are in good agreement with the physical properties 
of granular media, is suggested. An ice cover damage parameter and an empirical equation which describes the change in this 
parameter are introduced into the treatment. Energy relations are investigated. 0 1999 Elsevier Science Ltd. All rights reserved. 

1. PLASTICITY CONDITIONS IN MODELS OF DRIFTING ICES 

The model developed in the course of the large-scale AIDJEX experiment [l] and Hibler’s model [2] 
are the best known and widely used mathematical models of drifting sea ice. In the AIDJEX model, 
the ice cover is modelled by a two-dimensional elastoplastic medium and, in Hibler’s model, by a medium 
with a non-linearly viscous rheology. It is assumed in both approaches that the permissible internal 
stresses in the ice cover are located within a closed flow curve which is described by the equation 

F(o,,o,,,p*)=o; 01 =(<T, +0,)/2, 0][ =(0, -a,)/2 (1.1) 

where (3~ are the principal values of the internal stress tensor oap andp* is a parameter which charac- 
terizes the maximum possible compressive pressure and is functionally dependent on the deformation 
tensor. 

It is assumed that curve (1.1) is symmetrical about the 0, axis and lies entirely in the domain CF, c 0. 
This last condition follows from the assumption that the ice cover does not resist tensile deformations. 

The deformation rate tensor is related to the stress tensor by the associated flow rule 

9 =A$, e,, =hg, hz=O; e, =e, +e2, e,, =e,-e2 
I II 

(1.2) 

where elZ2 are the principal values of the deformation rate tensor cap. 
Equations (1.2) are satisfied when the stresses lie on the curve (1.1) and h 2 0. If the stresses ol,ll 

lie inside the flow curve, the stress tensor in the AIDJEX model oap is related to the deformation tensor 
eaP by Hooke’s law while, in Hibler’s model, ouP is related to the deformation rate tensor e,,, by a 
generalized Newton’s law. In the latter case, the geometrical meaning of relation (1.2) lies in the fact 
that the actual stresses are equal to the projections of the viscous stresses onto the flow curve in the 
case when the stresses ol, n, calculated using the formulae for the generalized Newton’s law, prove to 
be outside the flow curve [3]. 

The associated flow rule in the theory of ideal plasticity and in theories of strain hardening materials follows 
from Drucker’s postulate and the conditions for the invariance of the elastic moduli of a medium accompanying 
plastic deformations [4,5]. In this case, the work done by the stresses in elastic deformation over a closed contour 
in the space of the stresses is always equal to zero. 

The plasticity conditions (1.1) are set up in such a way that the flow curve “expands”, that is, there is strengthening, 
when the parameterp* increases. In the case of a decrease in pa, the flow curve contracts, which corresponds to 
softening. The parameterp. is usually defined in the form of a functional of the ice over density distribution function 
over the thicknesses. 

The density distribution function satisfies the kinetic equation [l] which, in the case under 
consideration, replaces the law of conservation of mass 
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dg I dt  + ge I = O( fg) /Oh + W, W = D(~ 0 (0) + {xr(0)w(g)) 
(1.3) 

D = 3/-~j2 + e~ ,O = arctg(etl/e I ) 

The function describes the redistribution of the ice over thicknesses during ridging and the formation 
of pure water. The coefficients % and ctr determine the fractions of plastic deformation corresponding 
to the production of pure water and ridging. The functionf(h) is equal to the rate of melting or freezing 
over of the ice cover. The redistribution function satisfies the normalization conditions, which follow 
from the law of conservation of the mass of the ice cover during ridging and a change in the area occupied 
by the ice cover on the ocean surface accompanying plastic deformation. In greater detail, a change in 
the open water area and the area occupied by the ridging ice occurs due to the divergence or convergence 
of the ice cover, which does not take part in ridging. It follows from the normalization conditions that 
Oto - otr = el/D. T h e  coefficients % and a~ are chosen in such a way that %(0) = 1, ~t,(n) = 1 and % = 0 
when 0 ~ (3/4~, n) and Otr = 0 when 0 ~ (0, re/4). 

The point 0 = re/2 corresponds to e~ = 0. It follows from (1.2) that, at this point, aF/c3ol = 0 and the 
deformation reduces to a pure shear. Since, when 0 = re/2, the condition % ~ 0 is satisfied, then, even 
in the case of pure shear, part of the ocean surface is ice-free. This process will continue until the 
concentration of the ice cover reaches a critical value for which p. vanishes and the ice cover is converted 
into a disperse medium without internal stresses. Hence, within the framework of the approach being 
considered, the ice cover is a structurally unstable material with respect to shear deformations. This 
corollary of the associated flow rule (1.2) and Eq. (1.3) is not fully substantiated from a physical point 
of view. 

When 0 ~ (0, n/2), it follows from (1.2) that any shear deformation is accompanied by a bulk expansion. 
This consequence of the associated flow rule has been known for a long time [6, 7]. Experiments show 
that, for many types of granular media, the use of an associated flow rule leads to excess bulk 
deformations. As a rule, bulk expansion only accompanies shear during the initial instants of the motion 
and then ceases. Such an expansion is associated with the microscopic structure of the shear of a granular 
medium in which the individual granules roll across each other. 

The second reason for criticism of an associated flow rule as applied to granular media is related to 
the example when the flow curve (1.1) contains rectilinear segments emanating from the origin of the 
coordinate system in the plane of the stresses (% oil). In these segments, the flow condition reduces 
to the Coulomb-Mohr dry friction law in which the stresses necessary for shear are proportional to the 
compression 

OH = - k/o1 (1.4) 

It follows from (1.2) and (1.4) that the power of the internal stress is equal to zero; crle I + oneli = 0. 
This consequence of the associated law also does not correspond to physical ideas concerning shears 
of a free-flowing granular medium. At the same time, there is a good experimental confirmation of the 
Coulomb-Mohr friction law. 

2. THE C O N S T I T U T I V E  RELATIONS 

Due to the inadequacies of the existing models, which have been noted above, the construction of a 
theory of granular media, which does not make use of an associated flow rule, is proposed. In the plane 
case, the constitutive relations are derived from kinematic hypotheses, the physical meaning of which 
reduces to  the representation of any shear deformation in the form of the sum of two simple shears 
along slip lines which are the characteristics of the equilibrium equations [7]. 

We then derive two systems of constitutive relations, which it is convenient to use when modelling 
the motion of an ice cover. The first system consists of an equation of state and the Prandtl-Reuss 
equations written for the deviators of the stress and deformation rate tensors [8]. The equation of state 
has the form 

o I =-n(g)  (2.1) 

where n(g) determines the functional dependence of the pressure in the ice cover on the density distri- 
bution function of the ice cover with respect to the thicknesses g(h)  at which irreversible bulk 
deformations commence. Equation (2.1) determines the pressures required for the ridging of the ice 
under compression and the tensile stresses at which break up of the ice cover occurs. 
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The Prandtl-Reuss equations have the form 

Ot Oy ' Ot Ox ) 

s = (tS,~ - t s , , ) / 2 ,  x = tsxv 
(2.2) 

Here, D/Dt is a Jaumann derivative, x, y, t are the horizontal coordinates and the time and Ux, Uy are 
the projections of the drift velocity of the ice cover onto thex- andy.axes. The dependence of the shear 
modulus gt on ts I is selected in such a way that the slip lines coincide with the characteristics of Eqs 
(2.2) in the plane of Ux, Uy. 

It follows from (2.1) and (2.2) that bulk deformations and shear are only related by the plasticity 
condition and actually occur independently. An ice cover is therefore a structurally stable medium with 
respect to shear deformations. Certain inadequacies in constitutive relations (2.1) and (2.2) may be due 
to the assumption that the pressure is independent of the shear deformations. 

A second type of constitutive relations has the form [9] 

ear j = k OH- + M Dt~  ~,~>0; s ~  = ~ff2outap 
OO e~ Dt ' 

(2.3) 

where s= = -Syy = s, Sxy = z are the components of the stress deviator and H(tsl, tSn) is the plastic potential 
which, from plasticity condition (2.1), cannot be identical to the function F. Equation (2.3) only describes 
the relation between the stresses and the deformation rates when plasticity condition (1.1) is satisfied 
and when ;~ t> 0. 

Equations (2.3) are hyperbolic equations if the inequalities 

1< 0 H I O H / - I , _ l < 2 M < l  - (2.4) 

are satisfied. 
The velocity characteristics match the slip lines when the following relations are satisfied 

s i n r =  s int~-sinv s i n F =  cos~cosv 
1 - sin ~ sin v 1 - sin ~ sin v 

( )-' 
s i n F = - 2 M ,  s inv=- -0g  __0g , sint~= 

Oa,, ) 
bF 

&sl 

(2.5) 

It follows from Eqs (2.3) that, when plasticity condition (1.1) is satisfied, the pressure in the ice cover 
depends on the bulk and shear deformation rates and is independent of the deformation tensor. 

3. THE D A M A G E  L E V E L  OF AN ICE C O V E R  

It has been pointed out above that the hypothesis that the ice does not resist tensile forces is custom- 
arily accepted when modelling an ice cover. In our opinion, the ability of an ice cover to resist tension 
depends on its damage. 

A typical example is fast ice close to a bank. Fast ice withstands significant tensile loads when a wind blows off 
the land to the sea. If the wind speed exceeds a certain critical value, the fast ice can be fractured and become 
broken ice. 

We will now define a parameter for the damageability of an ice cover, E, as the ratio of the total area 
of the ice floes found in a section of unit area of the ocean surface to the fraction of the area of this 
surface which is under the ice cover. For example, in the case of an unbounded, homogeneous ice plate 
E = 2, since the area of the ice surface is equal to the sum of the individual areas of the lower and 
upper surfaces of the ice cover. If there are cracks in the ice cover or it consists of separate ice floes 
or lumps of ice, then E > 2. Together with E, we define a parameter Ea = AE which is equal to the total 
area of the ice floes in a region of unit area of the ocean surface. 
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It is assumed that the ice cover does not resist tension provided that its damage level is sufficiently 
high. For a low damage level, the ice cover resists tension and, when X = 2, the limit tensile stress is 
equal to the tensile strength, that is, it is equal to h~c, where act ~- 106H/m 2. An increase in damage is 
mainly due to processes involving irreversible plastic deformations of the ice cover under the action of 
external loads acting from the atmosphere and the ocean [11]. 

It is assumed that the ice cover possesses the ability to heal internal defects, provided that they are 
not formed at a very intense rate. The healing of damage is due to the freezing together of the edges 
of cracks and surfaces of ice floes when they come into contact with One another. 

The ability of natural ice to heal internal defects has been investigated in many experimental papers (for example, 
[12]) and is due to the high homologous temperature of ice under natural conditions. The high intensity of healing 
of defects in fresh water ice is due to the presence of a quasi-fluid layer on its surface. In saline sea ice the intensity 
of healing is higher still, since the sea water, which permeates into cracks along numerous pores, rapidly fills them 
and then freezes. 

We shall describe the process by which there is a change in the damage of a Lagrangian element of 
an ice cover by the empirical equation 

Y(--~-+ Zael )= R,(T,A,h,Y~,e~f~,Bj)+ R2(T,A,h,Z, Bj) 

R~ ~>0, R2 ~<0 (3.1) 

The quantity yea is called the surface energy of the ice cover [13]. The constant 7 is equal to the bonding 
force between two layers of molecules in unit area of the material and T is the temperature of the ice 
cover. 

The function RI determines the rate of increase in damage accompanying the deformation of the ice 
cover. It is assumed that the greatest increase in the damage as a consequence of the fracture of ice 
floes occurs during plastic deformation of the ice cover, which involves the displacement of the ice floes 
relative to one another. In this case, the rate of the damage accumulation depends on the rates of plastic 
deformation, the actual damage level, temperature, thickness and the concentration of the ice cover. 

The function Rl may also depend on other parameters, which characterize the state of the ice cover 
and the external action on it and are denoted by the letters I.tj. 

A typical example is the effect of surface churning on the fracture of large ice fields, which manifests itself most 
strongly in the zone close to the edge. In this case, the parameter Rz characterizes the amplitude and length of 
the waves which propagate under the ice. If the amplitude of the waves is sufficiently large, breakdown of the large- 
scale ice fields into ice floes occurs. The size of these ice floes is comparable with the wavelength. 

The function R2 determines the rate of healing of the damage. In order to investigate its form, an 
additional analysis if the experimental data on the thermodynamic properties of ice cover is required. 
We note that not only is the function R2 unknown but the dependences of the rheological constants of 
the model on Z are also unknown. The effect of these relations can be taken into account by writing 
down empirical equations of the form (3.1). For example, the change in the field force in the Hibler 
and AIDJEX models can be described by the empirical equation 

dp, = Rl,(T,A,h,X, eaf~,~ti) + Re(T,A,h,Z,~t.i) ' RtP>~O, R2P<<O (3.2) 
dt 

The functions RPl and Rt~ are chosen empirically on the basis of intuitive ideas concerning the 
properties of an ice cover and comparison of the results of numerical calculations with natural observa- 
tions. This involves an adjustment of the model for the geographical region under consideration. 

4. ENERGY RELATIONS 

We now consider energy relations for an ice cover, the internal structure of which is characterized 
by the thickness h, a concentrationA, a damage Z and a temperature T. We take the following expression 
for the surface density of the internal energy 

U = pA(hu + Agh 2), A = (Pw - P) / P (4.1) 

where Pw is the density of water, p is the density of ice, and u is the bulk internal energy density. The 
second term is the potential energy of the ice cover as a body in a hydrostatic equilibrium [14]. 
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We write the first and second laws of thermodynamics for the ice cover per unit area of the ocean 
surface as 

dU = o ~ d e ~  + dQ" + d.,U + drU (4.2) 

TdS = dQ ~ + xaf~dE p + dQ' + T(d.fl + drS) d "~afJ 

(dmU = --de.U,a drift = --de~S, drU = pAufdt, drS = pAsfdt) 

Here, S = pAhs and s are the surface and volume entropy density, aQ ~ is the influx of heat and dQ' 
is the uncompensated heat. The total deformation tensor e~l~ = e~13 + ~13 is equal to the sum of the 
elastic and plastic deformation tensors, dmU and dmS are the changes in internal energy and entropy 
due to compressive or tensile deformations, drU and d ~  are the changes in the internal energy and 
entropy due to the thawing and freezing of the ice, andf is  the rate of thawing or freezing of the ice. 

We now determine the work done by the internal stresses during plastic deformation of the ice 
cover 

oal~de~ = ( ~  13 + x~ I~ + ~d~)dE~.~,~ t> 0 (4.3) 

Here, x ~ d ~ / >  0 is the part of the work of the internal stresses which is expanded in increasing the 
damage, x~,f~dePaf3 >>- 0 is the part of the work of the stresses which is expended in the redistribution of 
lumps of ice during ridging or in the case of deformations which lead to a change in concentration, and 
x ~ d a ~  t> 0 is the part of the work done by the stresses which is converted into heat. 

We now consider the free energy density function F = u - Ts and assume that F depends on the 
temperature T, the elastic deformation tensor e~ and the damage of the ice averaged over the thickness 
E/h. Using formula (4.2) and taking account o f  the equation for the change in damage (3.1) and the 
law of conservation of mass 

d(pAh ) = -de~pAh + pAfdt (4.4) 

we find 

OF Ah OF 3---~ = -s, p 3-~ = 6"~, = . txl3 d e  I ) p A h - ~  R I ~x "~afJ 

(4.5) 
d 

• pAh-~ER2= Q,  pAghAdh - ' ~ ' 4 ¢ p  - -  ~ ¥  "~,ctl3 

It is clear that the specification of the free energy density function F(T, e~, Z/h) and the functions 
R1, R 2 completely determines the dissipation in the medium. The sole condition imposed on these func- 
tions is that the expression for the dissipation x~13de p and the uncompensated heat dQ' must be positive. • . I ~ 

The simplest expression for the free energy has the form 

F = ×-&2 t~t'"e )2 + ~_L ((1~[)2 + (e~)2 ) - -  ct(T - T O )el + )'h Z (4.6) 

where × and ~2 are the elastic moduli and a is the coefficient of thermal expansion. 

5. A MODEL OF B R O K E N  ICE 

We shall refer to an ice cover which consists of small ice floes, which creep under one another when 
compressed and are barely fractured, as broken ice. The thawing and freezing of the ice are not con- 
sidered. It is assumed that a broken ice cover is deformed without internal stresses until its concentration 
A < 1. The rheology of broken ice is therefore described by the relations aQi ~ = 0 when A < 1. 

The damage of broken ice is quite large and u, its change, is described by the equation 

did+ Edde~ = 0 (5.1) 

We assume that ridging only occurs during compression of the ice, the concentration of which has 
attained the value A = 1. In this case, the change in the ice thickness is described by the equation 
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ah + --0 (5.2) 

Note that the ridging scenario, described by Eq. (5.2), is not the same as the scenarios described in 
the AIDJEX models, where it is assumed that the thickness of the ice in a ridge is 4-5 times greater 
than the thickness of the ice from which the ridge is formed and, in this case, only a small part of the 
ice cover participates in ridging [1]. Formula (5.1) implies that an icecover which forms a ridge possesses 
the properties of a granular material [15]. 

It follows from (4.5) that 

paghdh = x ade'. (5.3) v 

From (5.2) and (5.3) it follows that 

z ~  = - - ~ ,  r ~  = pAgh2/2 (5.4) 

We assume that the dissipation is the part of the work which is necessary to increase the potential 
energy during ridging 

It has been shown [15] that the dissipation may exceed the increase in the potential energy during 
ridging by a factor of 5-15 depending on the air temperature. Hence, kr ~ (5.15) [14]. 

It follows from (5.4) and (5.5) that the condition for ridging has the form 

ol = -~,., x,. = (1 + k,.)pAgh2/2 

We shall take the condition for the realization of plastic shear in the form of the Coulomb-Mohr 
law. The coefficient kf e (0. .1, 0.4) [14], The Prandtl-Reuss equations (2.2) can be chosen as the con- 
stitutive relations describing shear deformations. 
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